Computational Modeling of Ring Textures in Mesophase Carbon Fibers

نویسنده

  • Alejandro Daniel Rey
چکیده

Carbon fibers are widely used in many industrial applications due the fact of their excellent properties. Carbonaceous mesophases are liquid crystalline precursor materials that can be spun into high performance carbon fibers using the melt spinning process, which is a flow cascade consisting of pressure driven flow-converging die flow-free surface extensional spinline flow that modifies the precursor molecular orientation structure. Carbon fiber property optimization requires a better understanding of the principles that control the structure development during the fiber formation processes and the rheological processing properties. This paper presents the elastic and continuum theory of liquid crystals and computer simulations of structure formation for pressure-driven flow of carbonaceous liquid crystalline precursors used in the industrial carbon fiber spinning process. The simulations results capture the formation of characteristic fiber macro-textures and provide new knowledge on the role of viscous and elastic effects in the spinning process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

" Mesophase " - Pitch - Based Carbon Fibers : Part ‡ U Mechanical Properties and Thermal Expansion

Mechanical properties such as strength, modulus and strain to break, and coefficients of thermal expansion of mesophase-pitch-based carbon fibers were measured using the fibers with four different microtextures heat-treated at two different temperatures. The textures were radial with wedge, radial, random and onion. In strain to break of the fibers, there were not so much difference with differ...

متن کامل

Finite Element Analysis of Low Velocity Impact on Carbon Fibers/Carbon Nanotubes Reinforced Polymer Composites

An effort is made to gain insight on the effect of carbon nanotubes (CNTs) on the impact response of carbon fiber reinforced composites (CFRs) under low velocity impact. Certain amount of CNTs could lead improvements in mechanical properties of composites. In the present investigation, ABAQUS/Explicit finite element code (FEM) is employed to investigate various damages modes of nano composites ...

متن کامل

Meltblown Solvated Mesophase Pitch-Based Carbon Fibers: Fiber Evolution and Characteristics

Potentially low-cost continuous carbon fibers are produced from solvated mesophase pitch through a patented meltblowing process. The structural evolution and properties of the fibers are characterized by various analytical methods. The meltblown fibers are continuous fibers which are collected into a fibrous web form, and the diameter of the filaments is attenuated by the flow rate of air strea...

متن کامل

A comprehensive review on modeling of nanocomposite materials and structures

This work presents a historical review of the researches procured by various scientists and engineers dealing with the nanocomposite materials and continuous systems manufactured from such materials. Nanocomposites are advanced type of well-known composite materials which have been reinforced with nanosize reinforcing fibers and/or particles. Such materials can be better suit for the industrial...

متن کامل

Redistribution of Fibers in the Structure of Hollow Ring Spun Yarn

Core yarn was spun by introducing a PVA multifilament as the core through the yarn forming zone of a ring spinning frame and viscose fibers as the sheath containing tracer fibers. The water soluble PVA multifilament was extracted from the yarn structure. Then internal structure and properties of the hollow ring yarn was assessed and compared with those of typical ring yarns. Also, two plain fab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003